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ApPENDIX II
METHOD TO DETERMINE THE COEFFICIENTS BY USE OF THE
LEAST-SQUARE METHOD
The minimization of (26) is attained by minimizing both the
real and imaginary parts of (26). Setting

g=Im{Szy } f=Re{Spp }
we have the minimization conditions
Of _o0f _o Of _o of _o df _
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We find the coefficients of (4) by solving the simultaneous
equations (A3) and (A4).
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Single-Mode Fiber Design for Minimum Dispersion

PAULO SERGIO MOTTA PIRES AND
DAVID ANTHONY ROGERS, MEMBER, IEEE

Abstract —The value of the radius of the core of a single-mode step-
index optical fiber for minimum dispersion is calculated with the normal-
ized frequency in the range 1.0 < V < 2.5, using the approximation for the
eigenvalue U proposed by Miyagi and Nishida [1]. This calculation is made
by solving the total dispersion equation for the core radius when the
wavelength assigned is assumed to be that necessary for minimum total
dispersion. The computational procedure presented is simple enough to be
accomplished on a programmable calculator or microcomputer. This work
makes possible the characterization, with reasonable precision, of the ideal
fiber that should be used with the available optical source.

I. INTRODUCTION

The bandwidth for single-mode optical fibers is maximum
when operation of the system takes place at the wavelength for
minimum total dispersion A. Theoretical research concerning
dispersion in monomodal step-index optical fibers has been based
on the assumed prior knowledge of the core radius and of the
materials that constitute the core and the cladding, so that the
wavelength A can be found. Since the wavelength is established
by the characteristics of the known fiber, the next step is to
search for the corresponding optical source.
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In previous publications [2], [3], the exact characteristic equa-
tions and numerical methods for differentiation and interpolation
for calculating the value of A for monomodal step-index optical
fibers have been used. The results thus obtained were compared
with those that were arrived at utilizing asymptotic formulas
[4]-[71. In spite of the excellent results obtained, even in the
asymptotic limit, and having made possible the extension of the
analysis that had been developed to other cases, the large quan-
tity of calculations required the availability of medium to large
computer systems. When such systems are not available, some
approximate methods, with acceptable precision in these circum-
stances, allow the implementation of programs to calculate the
value of A using programmable calculators or microcomputer
systems.

Utilizing the total dispersion formula established by South [7],
derived with the objective of calculating A, together with the
approximate formulation for the eigenfunction U proposed by
Miyagi and Nishida [1], we prepared some programs for the
TI-59 programmable calculator that make possible the design of
monomodal step-index optical fibers. With the utilization of
these programs, we obtain the value of the radius of the core,
within the normalized frequency range 1.0 <V 2.5, for any
value of the wavelength assumed to be that for minimum disper-
sion. In other words, we start with knowledge of the materials
that will constitute the core and the cladding and with the value
of the wavelength, and subsequently calculate the value of the
core radius for which maximum information transfer will occur.
Thus we have the possibility of characterizing with reasonable
precision [8] the ideal optical fiber for use with the available
source.

In Section II, we present the equations used, while in Section
111, we will describe the computational methods implemented. In
Section IV, we present some values of the core radii 4@ for
information transmission at minimum dispersion and some curves
obtained for hypothetical fibers.

II. FORMULATION OF THE PROBLEM

The value of the wavelength for minimum total dispersion X
depends on: a) the physical characteristics of the materials that
constitute the core and the cladding, b) the core radius, and c¢) the
propagation constant of the dominant HE,; mode and some of
its derivatives. This value is calculated for the core radius a, with
a predetermined value (for a known fiber) by solving the total
dispersion equation [7]

A
on,

Dr(a)=— {(1— b)v, + by, +2b% + %b”ﬂ

1 1.\
——2(n2}’lf7_+b¢+*2‘b’0) Irex=0 (1)

€

where c is the phase velocity in a vacuum, A is the wavelength in
free space

2

vj=njn;’+(nj) ., J=L2 (22)
& =nni—nynh (2b)
0=n?-n3, ni=n3+bo. (2¢)

The primes and double primes in (1) and (2) represent differenti-
ations with respect to the wavelength A. In (2a)-(2¢), n, and n,
represent the refractive indices of the core and cladding, respec-
tively. In this paper, we will assume that the wavelength depen-
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dence of the refractive indices is given by the three-term Sellmeier
equation

3 2
AN
n12=1+ > !

1}\2_12’ Jj=12 (3)
1= :

where each (4,,/,) pair is related to the optical properties of the
materials involved. The derivatives of the refractive indices neces-
sary for the calculation of the parameters described by (2a)-(2b)
are given by the relations

3 2
1 _A'l'_>\.m j=1,2. (4)

34,238 +12)
) -1 (e-r)

The parameter b in (1) is the normalized propagation constant for
the dominant mode, given by
l}Z
b=1-5 (5)
where U is one of the eigenfunctions of the characteristic equa-
tion and V is the normalized frequency given, as a function of the
core radius, by

y=2Tg, 6)
A
The approximate formula for the parameter U that we will

adopt in this work was proposed by Miyagi and Nishida [1] and
is given by

(™

UVl 1 U 1 U
v+l

U=—2"(1-= - 35
6 w+1)' 2 (r+1)’

where U, = 2.40483.
Substituting (7) in (5), we have

uz 1 U 1 U

- -2 —o L ®
v+ ¢ (r+1) 20(V+1f}

Using (8), the derivatives b” and b” that are encountered in (1)
are calculated from
_ya-5)(2-v)4

b= V+1

9

(1-5)2-7) (1-b)(V+1)

_(%[L}Vl—(%)z +3+M)} (10)

A 2(V+1)
where
1 ( U, )4 1( U, )6
y= +5 (11)
Léo(l'_'b)l/z L’4‘1 2 p’4‘1
and
a=1_¢ 12)
A8

Instead of solving (1) to find A = A, we choose a value of A
(assumed to be the wavelength of the available light source) and
solve (1) for a = @ where 4 is the core radius for which there will
be minimum total dispersion for operation at A. Thus we are
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Fig 1 Main clements of the calculation process

solving the equation

Dr(A)],-4=0,

A = constant.

(13)

In Section III, the computational procedures \necessary for
solving (13) on small computer systems (or programmable calcu-
lators) will be outlined.

III. COMPUTATIONAL PROCEDURES

The process described above can be implemented on a pro-
grammable calculator or a small computer system using the
approach to be described in this section and summarized in Fig.
1. Using the TI-59, 710 programming steps were used.

Part 1

The program requires the operating wavelength X, the values of
the coefficients for the three-term Sellmeier equation for both the
core and the cladding, and three initial approximations for the
root & of (13), necessary for the initialization of the iterative
process employed below.

Part 2

Here, the values of the parameters that depend only on the
value of the wavelength A are calculated. These parameters,
obtained from (2)—(4), are constant during the execution of the
program.

Part 3

This procedure consists of calculation of the parameters that
depend on the core radius. This dependence is via the normalized
frequency V (see (6)). The parameters calculated in this segment
of the program are given by (5) and (7)-(12). Having made these
calculations and having those results obtained in Part 2, we are
able to calculate, using a subroutine, the values of D, (a) neces-
sary for the iterative process described below.

Part 4

In Part 4, Muller iteration [9] is used to solve (13). This
iterative process, besides presenting an almost quadratic conver-
gence, doesn’t require that the derivative of D;(a) be available.
This procedure uses three initial approximations for & which can
be obtained using bisection or a similar procedure. A subprogram
can be used to calculate these approximations based on the value
of the wavelength X and on the coefficients of the three-term
Sellmeier equations for the core and cladding materials. This
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subprogram calculates the initial value of the radius a; given by
the equation

A
NPrrE e

obtained by setting V=1 in (6), and with the increment set to
some convenient value such as AV = 0.05. Thus a search is made
for the interval where Dr(a) changes signs. This process is
confined to the range 1.0 < V < 2.5. The lower limit is established
due to the behavior of b (given by (8)) for V' <1.0 [2], while the
upper limit is equal to the approximate limit of monomodal
operation for the fiber. Once the interval is found, the initial
approximations required by the main program are the limits of
this interval, ¢, , and a,, and the mean, (¢, , +4,)/2=qa,_;.

Part 5 '

This part simply produces the values of 4 (solving (13)) and the
values of V(&) (from (6)). It is convenient also to include a
procedure to produce D, versus a for different values of A.

In the next section, we present the results obtained in the
synthesis of some idealized fibers.

a

IV. NUMERICAL RESULTS

Using the procedures cited above, curves for total dispersion
D, as a function of fiber core radius a are presented for a
wavelength A =1.55 pm. This value of A is the value for which the
lowest loss has been found [10]. The curves for D versus a are
presented in Figs. 2 and 3. The idealized fibers possess different
concentrations of GeO, in SiO, as core materials and 100.0-per-
cent fused SiO, (Fig. 2) and 100.0-percent quenched SiO, (Fig. 3)
as cladding materials. The coefficients of the three-term Sellmeier
equation for all the materials utilized in this work were obtained
from [11]-[13]. In the figures presented, the initial value for the
core radius a for each one of the curves corresponds to a value of
the normalized frequency ¥'=1.0. The final value of the core
radius corresponds to a value of V'=2.5 only for the curves
labeled (A) in these figures.

Some values of 4 and V(d) at constant values of A were
calculated for the same fibers considered in Figs. 2 and 3. The
results, obtained to a precision of 107> for 4, are presented in
Tables I and II. The average computational time necessary for
calculating each one of the pairs of values [d,V(&)] using the
TI-59 programmable calculator was 4 min. Interested readers
may contact one of the authors for information on the availabil-
ity of the TI-59 program listing.

Besides the synthesis programs described in Section III, a
procedure for calculating the waveguide dispersion D, as a
function of core radius a for fixed values of X was developed. The
equations for D, based on the Miyagi—Nishida approximation
[1] may be found in the Appendix. At this point, it is important
to note some distinctions between D, and D,

According to [6], wavegnide dispersion D, is calculated by
eliminating dispersive effects caused by the core and cladding
materials. Obviously, these dispersive effects are due to the
dependence of the refractive indices on the wavelength. In partic-
ular, the refractive index derivatives are strongly wavelength
dependent. Thus if the first and second derivatives of n, and n,
in (1) are eliminated, we have the equation for the waveguide
dispersion (see (Al) in the Appendix). Since in monomodal
operation a significant part of the dominant mode power propa-
gates via the cladding, one chooses as values of n; and n, for the
calculation of D, the constant values they have at the wavelength
of minimum dispersion A, for the cladding material. It is
important to note that the value of A, . does not cause the total
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Fig. 2. The total dispersion Dy is shown as a function of the core radius @ in
microns, for different core materials and fused SiO, cladding. Dy is normally
expressed in picoseconds per kilometer per nanometer or ps/(km-nm),
indicated in the figure as, simply, ps/km-nm.
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Fig. 3. The curves shown are similar to those of Fig. 2. However, the roots
are shifted slightly since quenched SiO, cladding was used.
TABLEI
VALUES OF @ AND V(&) FoR Fusep $iO, CLADDING
Iy CORE MATERIAL
(wm) | 13.5% Ge0, - 86.5% 510, | 7.0% GeD, - 93.0% S0, | 4.1% Ge0, - 95.9% §i0,
a () ¥(a) a_(m) V(@) | a (m) via)
1.45 2.1661 2.3618 2.3444 1.8298 | 2.5889 | 1.5120
. .
1,50 2.036] 2.1507 2,1320 1.6149 |  2.3661 1.3363
1,55 1.9428 1.9906 1.9665 1.4475 | 2.1622 | 11823 |
TABLE II
VALUES OF @ AND ¥(a) For QUENCHED SiO, CLADDING
7 CORE MATERIAL
( um) { 13.6% GeOp ~ 86.5% SiO2 7.0% GeO2 - 93.0% S1O2 4.1% GeO2 - 95.9% SiO2
a (ym) via) | a (ym) ) | a (m) v(a)
1.45 2.1905 2.368% 2.3787 1.8269 2.6468 1.5014
1.50 | 2.0568 2.1548 2.1584 1.6086 2.4122 1.3227
1.55 | 1.9614 1.9931 1.9872 1.4391 2,1955 1.1652
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Fig. 4 The wavegnide dispersign Dy, is presented as a function of the core
radius a for specific values of A. Dy, 15 shown n ps/(km-nm) or, sumply,
ps/km-nm. The calculations were made for n; =1.46866 and n,=1.44723,
obtained using the wavelength at which the cladding material dispersion is zero
(A e =1.2728 pm)

dispersion to be zero (unless the core radius goes to infinity and
the core and cladding have the same chemical composition). In
the synthesis case, where the wavelength A is known a priori, the
derivatives of the core and cladding indices of refraction are
nonzero. The choice of a fixed A should guarantee the validity of
(1). This means that the total dispersion is zero for A=A for
some fixed radius @. Thus (13) is also satisfied. If, for a fixed
core radius, we find a value of X through the total dispersion
equation (the analysis problem), for a constant value of A
assumed to satisfy (1), the ideal core radius of the fiber can be
found (synthesis problem).

Having made these considerations, for simplicity, only fibers
made of 13.5-percent GeO,—86.5-percent SiO, for the core and
100.0-percent fused SiO, for the cladding are considered in Fig.
4. Here, some waveguide dispersion curves, D, versus a, are
presented for different values of A. Following the procedure
outlined above, the value of the cladding refractive index n, is
determined to be 1.44723, while the value of the core refractive
index n, is found to be 1.46866, calculated using A, =1.2728 pm
for 100.0-percent fused SiO, [2]. From the curves shown, we
observe that, for fixed X, the magnitude of D, decreases with
increased core radius and that, for a given value of core radius,
the magnitude of D, increases with increasing A

Due to the behavior of the normalized propagation constant b
for values of ¥ <1.0 [2], attributed to the approximate formula
used for the parameter U (such behavior affecting the »” and »”
derivatives), the method of synthesis used here does not permit us
to find, for a single value of X, two values of the core radius. This
fact, which can be seen through the analysis presented in [3], is
the only limitation imposed on the theoretical development
established here.

V. CONCLUSIONS

A method for the synthesis of single-mode step-index optical-
fiber geometry for the normalized frequency range 1.0 <V < 2.5
has been presented. The method, based on the Miyagi-Nishida
approximation for the eigenvalue U [1], permits one to obtain the
core radius 4 corresponding to a preestablished minimum total
dispersion wavelength A identified as that of an available optical
source. This method permits the characterization with reasonable
precision of the ideal fiber for use with a given source. All of the

procedures discussed have been implemented on a small pro-
grammable calculator and are easily adaptable to a small com-
puter.

APPENDIX

The expression for the waveguide dispersion, obtained from the
total dispersion equation (1) with the first and second derivatives
of the refractive indices set equal to zero for both the core and
the clading, is given by

A1, 1(1, 12
D= | 3% 0—7%(51;0) (A1)
where
0=ni—ni, n:=n3+b6. (A2)

The expression for the normalized propagation constant b
continues to be that given by (8), while the expressions for the
derivatives with respect to wavelength are given by

o V=b)2-7)

AV +1) (A3)
b= b A 4y+ Uy
(1-5)2-v) 1-5)"*(v+1)°
2 V(y-6)
_(X+2A(YV+1)) ' (a4)

The parameter vy is given by (11).
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